Structural Equation Modeling of Seafood Consumption Behavior

Yuko Onozaka, Håvard Hansen, Ragnar Tveterås UiS Business School, University of Stavanger

Universitetet i Stavanger

35th Meeting of Norwegian Association of Economists January 8, 2013

Motivation

- Consumption decisions are influenced by factors that are not directly observable
 - E.g., Environmental concern and purchase decision of hybrid vehicle
- They are measured with errors
- Need for a comprehensive treatment for such factors in modeling

Structural Equation Modeling (SEM)

- Explicitly taking the measurement into account
- Unobserved (latent) variables usually measured with multiple items (indicators)
- More general case of systems of equation modeling

Objectives

- Utilize the recently collected survey data on seafood consumtion behavior
 - Multi-species
 - Multi-countries
- Specifically for this peper
 - Explore the relationship among country image, product perceptions, and consumption frequency
 - Employ SEM to explicitly include the measurement of latent variables
 - Focused on salmon in Germany and France

Latent and Indicator Variables

- Unobserved unidimensional *concept*
- Theoretically motivated
- Measured by indicator variables

 $x_j = \lambda_j \xi + \delta_j, \qquad j = 1, \dots, q$

- x is an indicator variable
- ξ is a latent variable
- λ is a coefficient relating x to ξ
- δ is a random error with zero expectation and is uncorrelated to ξ

Systems of Equations in Econometrics

 $\mathbf{y} = B\mathbf{y} + \Gamma \mathbf{x} + \boldsymbol{\zeta}$

- **y** is a $p \times 1$ vector of endogenous variables
- **x** is $q \times 1$ vector of exogenous variables
- B is a $m \times m$ matrix of coefficients
- Γ is a $m \times n$ matrix of coefficients
- ζ is a p × 1 vector of errors in the equations and uncorrelated to x
- (I − B) is assumed to be nonsingular

Measurement Models

 $\mathbf{x} = \Lambda_{\mathbf{x}} \boldsymbol{\xi} + \boldsymbol{\delta}$ $\mathbf{y} = \Lambda_{\mathbf{y}} \boldsymbol{\eta} + \boldsymbol{\epsilon}$

- **x** and **y** are a $q \times 1$ and $p \times 1$ vectors of observed indicators
- Λ_x and Λ_y are a $q \times n$ and $p \times m$ matrices of coefficients
- $\boldsymbol{\xi} \text{ and } \boldsymbol{\eta} \text{ are } n \times 1 \text{ and } m \times 1 \text{ vectors of latent variables}$
- δ and ε are q × 1 and p × 1 vectors of measurement errors
- Assumes E(ξ)=0, E(δ)=0, δ uncorr. to ξ η and ε,
 ε uncorr. to ξ η and δ

Structural Equations

$$\eta = B\eta + \Gamma \xi + \zeta$$
$$y = \Lambda_y \eta + \varepsilon$$
$$x = \Lambda_x \xi + \delta$$

- B is a $m \times m$ coefficient matrix
- Γ is a $m \times n$ coefficient matrix
- $\boldsymbol{\zeta}$ is a vector of random errors with zero expectations

Hypothesis and Estimation

The general hypothesis: $\Sigma = \Sigma(\mathbf{\theta})$

 $\boldsymbol{\Sigma}$: the population covariance matrix of observed variables

 $\Sigma(\pmb{\theta})$: the covariance matrix based on the model parameters $\pmb{\theta}$

$$F_{ML} = \log |\Sigma(\mathbf{\theta})| + \operatorname{tr} \{ S\Sigma^{-1}(\mathbf{\theta}) - \log |S| - (p+q) \}$$

where S is the sample covariance matrix of the observed data

• The estimated coefficients $\widehat{\theta}_{\textit{ML}}$ minimizes the above likelihood function

Seafood Country of origin knowledge

Q: Have you bought seafood products from Norway before?

Universitetet

i Stavanger

Macro Country Image Mean Scores (Peppu, et al., 2007)

Micro Country Image (Norwegian Seafood Products) (Peppu, et al., 2007)

Universitetet i Stavanger

Product Perceptions of Norwegian Salmon

Conceptual Diagram

Estimation Results (Germany)

Estimation Results (France)

Summary

- Macro image positively affects images of Norwegian seafood and salmon
 - Emphasizing Norway envokes positve image
- Also found positive association with the consumption frequency
- Perception of Norwegian salmon affects the image of Norwegian seafood
 - Improving the image of Norwegian salmon would also improve the image of Norwegian seafood
 - This may be different for other species
- Need to elaborate more on the relationship with the observed behavior

Alternative Specification (Germany)

Alternative Specification (Germany)

